The need for appropriate critical care service provision at non-tertiary hospitals in South Africa

Richard van Zyl-Smit, Vanessa Burch, Paul Willcox

To the Editor: Critical care is an expensive and labour-intensive undertaking, and it is well recognised that there is a global shortage of intensive care unit (ICU) beds.1 Although there are no recent published data regarding the cost of ICU care, total costs were estimated to exceed R2 000 per patient per day in 1991.2 Despite the cost, it is widely accepted that patients refused ICU admission have a significantly worse outcome.3,4

In the Cape Town metropole, home to at least 2.7 million people,3 there are 9 public hospitals providing approximately 2 800 adult beds, 186 of which offer critical care services (personal communication, medical superintendents, 2004). Approximately 87 (3% of all beds) beds have mechanical ventilation facilities, generally accepted to represent an ICU service.4 The remaining beds are located in high-care units (HCUs) offering specialised care, e.g. burn units, coronary care units, and/or a higher level of care and more intensive monitoring than available in general medical wards. While the number of critical care service beds required to serve a population of this size has not been determined locally, a recent survey of service provision at an urban secondary-level hospital in Cape Town has provided some useful data.5 G F Jooste Hospital (GFJH), a 200-bed facility serving an estimated population of at least 1.2 million people,7 attends to approximately 58 000 emergency unit visits per annum. Of these, almost 5 500 require admission for an acute medical problem – an average of 454 admissions per month. The range of medical emergencies necessitating HCU admission is shown in Table I. Collectively acute coronary syndromes (ACSs), diabetic emergencies, drug overdose/poisoning and sepsis accounted for 76.6% of patients admitted. The median age of admissions was 45.3 years (range 13 - 86 years), with a median stay of 2 (0.5 - 14) days. The overall mortality rate for ventilated patients was 30.1% (in-hospital 38.5%). While this was significantly higher than the 4.3% for non-ventilated patients (in-hospital 7.0%) (p < 0.01), it compares favourably with local and international data.4 Ventilated survivors had a significantly lower mean (95% confidence interval (CI)) APACHE II score than ventilated non-survivors, viz 15 (14 - 16) compared with 19 (17 - 21) (p < 0.0001). This was true of all survivors compared with non-survivors: 9 (9 - 10) versus 18 (16 - 20) (p < 0.001). The spectrum of medical emergencies necessitating HCU admission is shown in Table I. Collectively acute coronary syndromes (ACSs), diabetic emergencies, drug overdose/poisoning and sepsis accounted for 76.6% of patients admitted. The median age of admissions was 45.3 years (range 13 - 86 years), with a median stay of 2 (0.5 - 14) days. The overall mortality rate for ventilated patients was 30.1% (in-hospital 38.5%). While this was significantly higher than the 4.3% for non-ventilated patients (in-hospital 7.0%) (p < 0.01), it compares favourably with local and international data.4 Ventilated survivors had a significantly lower mean (95% confidence interval (CI)) APACHE II score than ventilated non-survivors, viz 15 (14 - 16) compared with 19 (17 - 21) (p < 0.0001). This was true of all survivors compared with non-survivors: 9 (9 - 10) versus 18 (16 - 20) (p < 0.001).

Discussion

The survey results demonstrate a good patient outcome overall, given that this HCU provides limited ICU facilities (mechanical ventilation) to more than 200 patients per year despite inadequate staff-patient ratios (1:2) and limited training – only 2 registered nurses have ICU training. In addition, the 2-day duration of stay clearly indicates the demands placed on this service. There are, however, significant differences in the outcome of patients within the different diagnostic groups. These are listed in Table I. The excellent outcome in patients presenting with acute drug overdose/poisoning, including those requiring ventilation, and the ACS group, particularly patients with unstable angina pectoris (mortality rate 0%), differs greatly from the mortality figures observed in ventilated patients with a high APACHE II admission score and/or a primary diagnosis of diabetic ketoacidosis (DKA) or sepsis. Based on the survey data, it is clear that non-tertiary hospitals with mechanical ventilation facilities are currently providing much-needed critical care in the Western Cape.

To the Editor: Critical care is an expensive and labour-intensive undertaking, and it is well recognised that there is a global shortage of intensive care unit (ICU) beds.1 Although there are no recent published data regarding the cost of ICU care, total costs were estimated to exceed R2 000 per patient per day in 1991.2 Despite the cost, it is widely accepted that patients refused ICU admission have a significantly worse outcome.3,4

In the Cape Town metropole, home to at least 2.7 million people,3 there are 9 public hospitals providing approximately 2 800 adult beds, 186 of which offer critical care services (personal communication, medical superintendents, 2004). Approximately 87 (3% of all beds) beds have mechanical ventilation facilities, generally accepted to represent an ICU service.4 The remaining beds are located in high-care units (HCUs) offering specialised care, e.g. burn units, coronary care units, and/or a higher level of care and more intensive monitoring than available in general medical wards. While the number of critical care service beds required to serve a population of this size has not been determined locally, a recent survey of service provision at an urban secondary-level hospital in Cape Town has provided some useful data.5 G F Jooste Hospital (GFJH), a 200-bed facility serving an estimated population of at least 1.2 million people,7 attends to approximately 58 000 emergency unit visits per annum. Of these, almost 5 500 require admission for an acute medical problem – an average of 454 admissions per month. The range of medical emergencies necessitating HCU admission is shown in Table I. Collectively acute coronary syndromes (ACSs), diabetic emergencies, drug overdose/poisoning and sepsis accounted for 76.6% of patients admitted. The median age of admissions was 45.3 years (range 13 - 86 years), with a median stay of 2 (0.5 - 14) days. The overall mortality rate for ventilated patients was 30.1% (in-hospital 38.5%). While this was significantly higher than the 4.3% for non-ventilated patients (in-hospital 7.0%) (p < 0.01), it compares favourably with local and international data.4 Ventilated survivors had a significantly lower mean (95% confidence interval (CI)) APACHE II score than ventilated non-survivors, viz 15 (14 - 16) compared with 19 (17 - 21) (p < 0.0001). This was true of all survivors compared with non-survivors: 9 (9 - 10) versus 18 (16 - 20) (p < 0.001).

Discussion

The survey results demonstrate a good patient outcome overall, given that this HCU provides limited ICU facilities (mechanical ventilation) to more than 200 patients per year despite inadequate staff-patient ratios (1:2) and limited training – only 2 registered nurses have ICU training. In addition, the 2-day duration of stay clearly indicates the demands placed on this service. There are, however, significant differences in the outcome of patients within the different diagnostic groups. These are listed in Table I. The excellent outcome in patients presenting with acute drug overdose/poisoning, including those requiring ventilation, and the ACS group, particularly patients with unstable angina pectoris (mortality rate 0%), differs greatly from the mortality figures observed in ventilated patients with a high APACHE II admission score and/or a primary diagnosis of diabetic ketoacidosis (DKA) or sepsis. Based on the survey data, it is clear that non-tertiary hospitals with mechanical ventilation facilities are currently providing much-needed critical care in the Western Cape.
The lack of ICU beds nationwide would further magnify the issues if extrapolated nationally. Withdrawing these services is likely to precipitate a crisis at tertiary hospitals, given the documented service demand. There are, however, patients who demonstrate a poor outcome under the current conditions of service delivery. It is therefore a matter of urgent priority to develop national guidelines that will assist non-ICU clinicians to address the following issues: (i) which patients with ACS are least likely to benefit from a HCU admission, i.e. limit the unnecessary use of scare resources; (ii) provision of non-tertiary critical care, including short-term ventilation (less than 48 hours), for admissions with an expected favourable outcome, e.g. drug overdose patients and/or those with admission APACHE II scores of less than 15; and (iii) early identification and transfer of critically ill patients who require tertiary care, e.g. ventilated patients with an admission APACHE II score of 15 or more, and/or a diagnosis of DKA or sepsis. For these criteria to be useful they will need to be based on simple, reliable clinical data, such as those suggested here, viz. primary diagnosis necessitating critical care, APACHE II score on admission and need for mechanical ventilation beyond 48 hours. The data from this audit have been provided to superintendents at both tertiary and non-tertiary hospitals as well as key critical care planning personnel at provincial level including the co-ordinating clinician for critical care services for the Western Cape. The detailed information provided should assist in formulating clinical guidelines for tertiary and non-tertiary critical care service provision. There is, however, also a national group of clinicians working on the formulation of national guidelines for the care of critically ill patients. The data provided by our survey may therefore serve to inform policy-making decisions at this level as well. Given inter-provincial differences in health care resource allocations, policy adjustments between provinces may be required. Despite these potential differences, clear guidelines regarding assessment and transfer of critically ill patients would be widely welcomed by the large number of clinicians currently managing critically ill patients outside the comparatively well-resourced settings of tertiary hospitals in South Africa.

Table I. Primary acute medical problem requiring admission to HCU

<table>
<thead>
<tr>
<th>Diagnostic group</th>
<th>Number of admissions (%)</th>
<th>Median age years (range)</th>
<th>Mortality rate (%) (HCU/in-hospital)</th>
<th>Examples of diagnoses included in this group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolic disorders</td>
<td>257 (29.9)</td>
<td>42 (13 - 79)</td>
<td>11.3/15.2</td>
<td>Diabetic emergencies (DKA, hypoglycaemia) renal failure Myocardial infarction and unstable angina pectoris</td>
</tr>
<tr>
<td>Acute coronary syndromes</td>
<td>247 (28.8)</td>
<td>57 (24 - 85)</td>
<td>5.3/5.3</td>
<td>Drug overdose and poisoning Pneumonia, meningitis, septic shock Stroke, pulmonary oedema, cardiac arrhythmias, hypertension</td>
</tr>
<tr>
<td>Drug overdose/poisoning</td>
<td>92 (10.7)</td>
<td>24 (13 - 74)</td>
<td>3.3/3.3</td>
<td>Drug overdose and poisoning</td>
</tr>
<tr>
<td>Sepsis syndrome</td>
<td>91 (10.6)</td>
<td>37 (13 - 86)</td>
<td>31.9/41.8</td>
<td></td>
</tr>
<tr>
<td>Other CVS disorders</td>
<td>77 (9.0)</td>
<td>54 (16 - 86)</td>
<td>13.0/26.0</td>
<td></td>
</tr>
<tr>
<td>Respiratory disorders</td>
<td>77 (9.0)</td>
<td>46 (19 - 74)</td>
<td>9.0/10.2</td>
<td>Non-infective, e.g. asthma, chronic obstructive pulmonary disease Status epilepsy, myasthenia gravis, Guillain-Barré syndrome</td>
</tr>
<tr>
<td>Neurological disorders</td>
<td>18 (2.1)</td>
<td>36.5 (14 - 63)</td>
<td>5.5/22.2</td>
<td></td>
</tr>
</tbody>
</table>

CVS = cardiovascular; DKA = diabetic ketoacidosis.

Table II. Mortality outcome of patients most frequently requiring ventilation

<table>
<thead>
<tr>
<th>Ventilation required</th>
<th>Ventilation not required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number admitted</td>
<td>Median age (yrs) (range)</td>
</tr>
<tr>
<td>A 39</td>
<td>24 (13 - 57)</td>
</tr>
<tr>
<td>B 38</td>
<td>47 (20 - 73)</td>
</tr>
<tr>
<td>C 43</td>
<td>42 (13 - 74)</td>
</tr>
<tr>
<td>D 18</td>
<td>48 (18 - 68)</td>
</tr>
</tbody>
</table>

A = drug overdose/poisoning; B = non-infective respiratory disorder; C = sepsis; D = diabetic ketoacidosis.

The lack of ICU beds nationwide would further magnify the issues if extrapolated nationally. Withdrawing these services is likely to precipitate a crisis at tertiary hospitals, given the documented service demand. There are, however, patients who demonstrate a poor outcome under the current conditions of service delivery. It is therefore a matter of urgent priority to develop national guidelines that will assist non-ICU clinicians to address the following issues: (i) which patients with ACS are least likely to benefit from a HCU admission, i.e. limit the unnecessary use of scare resources; (ii) provision of non-tertiary critical care, including short-term ventilation (less than 48 hours), for admissions with an expected favourable outcome, e.g. drug overdose patients and/or those with admission APACHE II scores of less than 15; and (iii) early identification and transfer of critically ill patients who require tertiary care, e.g. ventilated patients with an admission APACHE II score of 15 or more, and/or a diagnosis of DKA or sepsis. For these criteria to be useful they will need to be based on simple, reliable clinical data, such as those suggested here, viz. primary diagnosis necessitating critical care, APACHE II score on admission and need for mechanical ventilation beyond 48 hours. The data from this audit have been provided to superintendents at both tertiary and non-tertiary hospitals as well as key critical care planning personnel at provincial level including the co-ordinating clinician for critical care services for the Western Cape. The detailed information provided should assist in formulating clinical guidelines for tertiary and non-tertiary critical care service provision. There is, however, also a national group of clinicians working on the formulation of national guidelines for the care of critically ill patients. The data provided by our survey may therefore serve to inform policy-making decisions at this level as well. Given inter-provincial differences in health care resource allocations, policy adjustments between provinces may be required. Despite these potential differences, clear guidelines regarding assessment and transfer of critically ill patients would be widely welcomed by the large number of clinicians currently managing critically ill patients outside the comparatively well-resourced settings of tertiary hospitals in South Africa.

Are allergies affecting your health?

"One in 10 South Africans are sensitised to the house dust mite and show symptoms of allergy... This makes it the single most common and significant allergen in South Africa today."

You probably know that almost 30% of all visits to the doctor are to treat allergies or allergic reactions. But did you know that dust mite droppings could be the cause? Top GPs, paediatricians and ENs agree that dust mite excretions can lead to:

- Itchiness
- Eczema
- Urticaria
- Rash
- Itchy eyes
- Conjunctivitis
- Rhinitis
- Asthma

Medical research shows that millions of dust mites live in every home, no matter how clean it is. They secrete their waste into beds, pillows, carpets, furniture and fluffy toys and even pets.

Scientifically formulated MiteFree:
- Combats dust mite allergies,
- Neutralises the harmful proteins dust mites excrete and
- Disinfects the home.

MiteFree Dust Mite Spray is non-toxic, non-carcinogenic and fully biodegradable. Approved by the SABS, it is safe to use in all beds, cats and cribs.

www.mitefree.co.za
Available at leading pharmacies.
Ask for MiteFree by name.

April 2007, Vol. 97, No. 4 SAMJ