Cryptococcal meningitis (CM) is a major cause of death among HIV-infected individuals. It causes an estimated 957 900 cases and 624 700 deaths worldwide annually, the vast majority of them in sub-Saharan Africa.1 In Cape Town, CM is now the most common cause of adult meningitis (63% of all microbiologically confirmed cases), and acute outcomes are poor. Even with optimal treatment in study settings, 10-week mortality rates are between 24% and 37%. In 2009, in a routine care setting at an urban hospital in Johannesburg, 67% of patients had died or were lost to follow-up at 3 months (N Govender et al., unpublished data). Unfortunately almost half of South African patients still receive sub-optimal initial treatment with oral fluconazole rather than intravenous amphotericin B. Clearly, given the substantial mortality and morbidity associated with CM, preventive interventions should be prioritised.

As CM primarily affects patients with CD4+ T-cell counts ≤100 cells/µl, the incidence should fall during scale-up of antiretroviral therapy (ART) programmes, as in the high-income countries.7 However, despite recent progress in expanding access to ART in South Africa,8 the median CD4+ T-cell count of patients initiating ART remains low, and a high risk of new AIDS events and mortality persists during the first months of ART. Numbers of CM cases in Cape Town remained constant between 2003 and 2008 despite a large increase in ART coverage,9 and national surveillance shows slight increases in the incidence of reported CM cases year on year.10

With expanding ART access, an increasing proportion of CM diagnoses occur among patients already receiving ART – 20% in a cohort of CM patients from Cape Town.11 Most of these patients had recently initiated ART (median duration 41 days), and their in-hospital mortality was high (29%). CM is therefore a leading contributor to the high early mortality in African ART programmes. It accounts for up to 20% of all deaths,9 many of which are thought to be due to ‘unmasking’ cryptococcal disease among patients who had sub-clinical disease when starting ART.12,13

To date, preventive strategies have consisted of routine fluconazole primary prophylaxis for all patients with low CD4+ T-cell counts. Although this approach reduces the incidence of CM,16 concerns exist: fluconazole resistance may develop with widespread use;17 it is not cost-effective;18 it is teratogenic; and fluconazole has potential interactions with both ART and tuberculosis (TB) medication (Table I). These issues have led to very limited uptake of fluconazole primary prophylaxis in HIV treatment programmes.

Fortunately, research has demonstrated that nearly all patients at risk of developing CM during ART could be identified on entry into ART programmes by screening for sub-clinical infection using cheap (ZAR38.95), simple and highly sensitive cryptococcal antigen (CRAG) blood tests.22 In 707 patients initiating ART in Cape Town, stored serum samples from 13% of patients with CD4+ T-cell counts ≤100 cells/µl tested positive for CRAG in a retrospective analysis. Prospective screening for CRAG in this cohort would have been 100% predictive of subsequent development of CM within the first year of treatment.24 If identified prospectively, such patients could be given ‘pre-emptive’ treatment to prevent progression from cryptococcal anaemia to life-threatening meningitis. Such a ‘targeted’ prevention strategy would avoid many potential problems of widespread fluconazole use with a blanket primary prophylaxis approach.

Cape Town data also show that 73% of ART-naïve patients presenting with CM have already been diagnosed with HIV, a median of 4 months before CM, but developed disease before starting ART.23 CRAG screening could also identify these patients, allowing for pre-emptive therapy and fast-tracking for rapid ART initiation – an issue of particular priority given the exceptionally high mortality of South African patients in this pre-treatment period.24,25 If all patients who had previously tested HIV-positive (both those on ART and the 73% who were known to be HIV-positive but not on ART) had been screened, and effective interventions given, up to 78% of cases of CM could have been prevented.

CRAG screening directed at all newly diagnosed HIV-positive patients with CD4+ T-cell counts ≤100 cells/µl is likely to detect most cases. At a programmatic level, plasma from ethylenediaminetetraacetic acid (EDTA) samples sent for CD4 count testing could...
Table I. Pros and potential cons of screening for serum CRAG among asymptomatic HIV-infected patients with CD4+ T-cell count ≤100 cells/µl

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptococcal meningitis is one of the most common HIV-related opportunistic infections in South Africa. If cryptococcosis is diagnosed when patients present with meningitis: • treatment is complex and expensive • requires 14 days admission • mortality is extremely high despite optimal treatment. The cost of a serum CRAG test is approximately R40 per test. Screening asymptomatic patients and pre-emptively treating those with positive serum CRAG to prevent meningitis is cost-effective.</td>
<td>The optimal treatment of patients diagnosed with asymptomatic antigenaemia is not defined, but we can make recommendations pending further research. There are potential drug interactions between fluconazole and NNRTIs. Fluconazole increases nevirapine levels, but concomitant use has not been associated with increased nevirapine toxicity in the two published studies. Fluconazole is potentially teratogenic, but pregnancy is uncommon among patients with very low CD4+ T-cell counts; this has not been reported as a problem where primary prophylaxis has been used. In an antigen screening programme, fluconazole exposure would be limited to patients at very high risk of developing life-threatening CM. Fluconazole will increase pill burden, but is given once a day and is well tolerated.</td>
</tr>
</tbody>
</table>
Deaths during or after a surgical procedure may be considered medico-legal and subjected to medico-legal autopsy and inquest. We define death in medical terms and discuss the implications of the provisions of the Amended Health Professions Act of 1974 and its recent amendment. Problems with the old and new definitions of such deaths and whether the amendment provides additional patient protection for the patient are considered. We challenge the South African law-makers to review the all-inclusive terminology in relation to such deaths.

Introduction

Patients who undergo anaesthesia and medical procedures may die as a result thereof. South African law requires any death considered unnatural to be reported for medico-legal autopsy and inquest. Unnatural death related to anaesthesia is provided for in the Health Professions Act. In July 2008, a revised version of this statutory obligation came into effect with the proclamation of the Health Professions Amendment Act. The amendment in South African law appears to be related to the broader medico-legal and subjected to medico-legal autopsy and inquest. Unnatural death related to anaesthesia is provided for in the Health Professions Act.3 In July 2008, a revised version of this statutory obligation came into effect with the proclamation of the Health Professions Amendment Act. We examine the scope and significance of this amendment, and consider its implications for health care providers.

Background and definitions

The repealed law stated that 'the death of a person whilst under the influence of a general anaesthetic or local anaesthetic, or of which the

MEDICINE AND THE LAW

The amended legislation on procedure-related deaths – an advance in patient care?

T E Madiba, Poonitha Naidoo, S R Naidoo

The amendment in South African law appears to be related to the broader medico-legal and subjected to medico-legal autopsy and inquest. Unnatural death related to anaesthesia is provided for in the Health Professions Act.3 In July 2008, a revised version of this statutory obligation came into effect with the proclamation of the Health Professions Amendment Act. We examine the scope and significance of this amendment, and consider its implications for health care providers.

Issues pertinent to South Africa

The amendment in South African law appears to be related to the requirement for health professionals to recognise the need for greater protection for the vulnerable patient under their authority and care. The wider-ranging provision in section 48 of the Health Professions Amendment Act permits legal inquiry into deaths which may have evaded investigation under the repealed section 56 of the Health Professions Act.