1. Introduction

Tigecycline, the first of a new class of broad-spectrum antibiotics, the glycylcyclines, was recently licensed in South Africa for the parenteral treatment of adult patients with complicated intra-abdominal infections (cIAIs) and complicated skin and soft-tissue infections (cSSTIs). This statement addresses important aspects of the new agent, including pharmacokinetics, mode of action and antibacterial spectrum, summarises key clinical trial data, and highlights appropriate use of the drug. Several other important considerations are also briefly addressed.

2. Metabolism and pharmacokinetics

- Tigecycline undergoes minimal metabolism and is primarily excreted by the liver. Additional routes of elimination include renal excretion (22%).
- Dosing (100 mg loading dose followed by 50 mg 12-hourly) is uncomplicated as the agent has no effect on cytochrome P450. No clinically relevant drug interactions, the pharmacokinetics (PK) are not influenced by renal impairment, and it is not removed by haemodialysis.
- In patients with severe hepatic impairment (Child Pugh C), the initial dose of tigecycline should be 100 mg followed by a reduced maintenance dose of 25 mg every 12 hours.
- Tigecycline protein binding is between 71% and 89% and the drug demonstrates unusual pharmacokinetics. Following multiple doses of 30-minute infusions of 50 mg given 12-hourly, the following has been documented
- a maximum trough plasma concentration (C_{min}) of 0.13 mg/l
- an AUC from 0 to 24 hours (AUC_{0-24}) of 4.7 mg/h/ml
- a high average steady-state volume of distribution (V_{ss}) of 639 l.

This indicates that the drug is widely distributed and undergoes extensive and rapid transfer from the blood into the tissues, where levels far exceed those of serum (Table II).

3. Mode of action

- Tigecycline binds to the 30S ribosomal subunit, inhibiting protein synthesis in a fashion similar to that of the aminoglycosides, macrolides and linezolid.
- It is generally bacteriostatic except for Streptococcus pneumoniae and Legionella spp. where it is bactericidal.
- Tigecycline has a prolonged post-antibiotic effect, ranging from 4.9 hours for Escherichia coli to 3.4 - 4 hours for Staphylococcus aureus. This suggests that it has the potential to exert a significant antibacterial effect even when levels are below the minimum inhibitory concentration (MIC).
- Pharmacodynamic studies have shown that tigecycline exhibits time-dependent killing, and as such it has been recommended that levels should be maintained above the MIC for 50 - 75% of the dosing interval. However, because of the long half-life and post-antibiotic effect, the area under the inhibitory curve (AUC/MIC) has also been shown to be most predictive of efficacy.
- Tigecycline appears to overcome the major mechanisms conferring resistance to the tetracyclines (ribosomal protection and efflux pumps) owing to the steric hindrance afforded by a large D-ring substitution.
- It is also not affected by common resistance mechanisms that affect other antibiotics, such as penicillin-binding protein modifications by methicillin-resistant S. aureus.
G
tuide

June 2010, Vol. 100, No. 6 SAMJ

(MRSA), extended-spectrum β-lactamase (ESBL) production by Enterobacteriaceae, carbapenemase production by Klebsiella pneumoniae, or DNA gyrase mutations that confer fluoroquinolone resistance.2

4. Antibacterial spectrum

- The Tigecycline Evaluation and Surveillance Trial (TEST), a global, multicentre surveillance programme, documented that tigecycline is highly active against Gram-positive pathogens, including MRSA, methicillin-resistant S. epidermidis (MRSE) and enterococci, including vancomycin-resistant enterococci (VRE).7,8
- The agent is also highly active against Enterobacteriaceae, anaerobes and atypical pathogens.1,2,7,8
- Reduced activity of tigecycline has been observed for Proteus spp., Providencia spp. and Morganella spp., and Pseudomonas aeruginosa is also not reliably inhibited by tigecycline.1,2
- There is neither synergy nor antagonism with other antibiotics.8

5. Clinical trial data

5.1 Tigecycline has been studied in four phase III double-blind, randomised, multicentre comparator clinical studies in adult hospitalised patients with cIAI and cSSTI:

- Tigecycline, in conjunction with operative intervention, was shown to be as effective as imipenem/cilastatin in treating cIAI, with cure rates in the microbiologically evaluable patients identical in the two groups (86%, N = 685 v. 86%, N = 679, respectively), and the outcome did not differ between monomicrobial versus polymicrobial infections.10
- Cure rates by clinical diagnosis in the microbiologically evaluable population in cIAI are depicted in Fig. 1.
- Cure rates in clinically evaluable patients hospitalised with cSSTI were also similar for those treated with tigecycline and those treated with vancomycin plus aztreonam (87%, N = 422 v. 89%, N = 411, respectively).11
- Cure rates according to underlying co-morbidity and concomitant baseline bacteraemia in the clinically evaluable population in cases of cSSTI are depicted in Fig. 2.

5.2 Tigecycline was also evaluated in adults hospitalised with community-acquired pneumonia (CAP) in two randomised, double-blind, active-controlled, multinational, multicentre studies12 with levofloxacin (500 mg IVI once or twice daily) as comparator:

- Microbiological and clinical outcome was similar in the two studies, including cases with L. pneumophila infections.
- An analysis of patients with a higher risk of mortality (age ≥50 years, pneumonia severity index (PSI) score ≥3 or S. pneumoniae bacteraemia) in these two studies also showed similar results for clinically evaluable patients; favourable outcomes were documented in 89.55% (188/210) and 81.2% (152/187) in the tigecycline and levofloxacin arms, respectively.

5.3 The agent was also studied in a phase III, open-label, non-comparative study of the treatment of serious infections due to resistant Gram-negative organisms.13 In the microbiologically...
evaluable (ME) population at test of cure (TOC), the clinical cure rate was 72.2% (95% confidence interval (CI) 54.8 - 85.8) and the microbiological eradication rate was 66.7% (95% CI 13.7 - 78.8).

5.4 The efficacy of tigecycline compared with vancomycin or linezolid for the treatment of serious infections with MRSA or VRE was studied in another phase III, multicentre, double-blind, randomised study.14 For MRSA infections, clinical cure rates in the ME patients (N=117) were 81.4% with tigecycline and 83.9% (N=31) with vancomycin. In patients with VRE (N=15), 3 of 3 ME patients were cured by tigecycline compared with 2 of 3 patients by linezolid.

6. Safety and tolerability

- The most frequent adverse events in all study subjects, including tigecycline-treated patients and patients receiving comparator therapy, were nausea (30% and 16%, respectively) and vomiting (20% and 11%, respectively).20,21
- No significant difference in discontinuation due to treatment-related adverse events was noted between tigecycline and all comparators (5% and 4.7%, respectively).20,21

7. Other considerations

7.1 Breakpoints for tigecycline susceptibility testing

- As depicted in Tables IIIa and IIIb, different breakpoints for Enterobacteriaceae are recommended by different authorities.
- As a consequence, published susceptibility rates for K. pneumoniae, E. coli and other Enterobacteriaceae differ depending on which criteria are used.
- Similarly conflicting results and discrepancies between susceptibility methods have raised the question as to which method and which breakpoints should be used when reporting Acinetobacter baumannii susceptibility:
 - Most published studies to date have used a provisional breakpoint of ≤2 mg/l.
 - However, the Food and Drug Administration (FDA)18 and the European Committee on Antimicrobial Susceptibility Testing (EUCAST)4 have not made recommendations for A. baumannii, and the British Society for Antimicrobial Chemotherapy (BSAC) has recommended a more conservative breakpoint of susceptibility (≤1 mg/l), similar to that of Enterobacteriaceae.19

7.2 In vitro and in vivo data for tigecycline activity against MDR (including carbapenem-resistant) A. baumannii

- Despite the confusion described above, it is expected that tigecycline will frequently be used in South Africa (alone or in combination) for the treatment of severe A. baumannii infections, particularly in critically ill patients.
- In vitro data derived from 9 of 18 studies reporting on multi-drug resistant (MDR) A. baumannii and 7 of 15 studies reporting specific data on carbapenem-resistant Acinetobacter spp. suggested that at least 90% of strains are susceptible to tigecycline at an MIC breakpoint of ≤2 mg/l.22
- Tigecycline was also active against 9 of 10 polymyxin-resistant strains and 17 of 17 polymyxin intermediate-resistant strains.
With regard to clinical efficacy, very few published data are available. Retrospective data compiled from 42 severely ill patients (8 of whom were bacteraemic) treated with tigecycline showed that tigecycline in combination with other antibiotics (mostly polymyxin in 28 patients) was effective in 76% (32/42). It is important to note that no cases of Acinetobacter bacteraemia were followed by 50 mg 12-hourly) in critically ill patients, as the higher volume of distribution in these patients may contribute to significant under-dosing (unpublished reports have suggested better efficacy at maintenance doses of 100 - 150 mg 12-hourly). Until further data become available, no firm recommendations can be made with regard to the testing or clinical utility of tigecycline, either alone or in combination with polymyxin, the carbapenems (regardless of the mode of delivery), rifampicin (or possibly fosfomycin) for life-threatening MDR Acinetobacter infections. It would, however, seem prudent to use tigecycline at higher doses and in combination with other agents in such infections.

7.3 Tigecycline for bacteraemic patients
Tigecycline should not be used in primary bacteraemia or in infective endocarditis, as it would appear logical that in these settings the serum concentration should exceed the MIC. Considering that the C_{max} is 0.87 mg/l, it would be expected that this agent would not be effective.

Bacteraemic infections are, however, usually secondary to a primary source and eradication of the source is likely to result in clinical resolution.

Data from the registration trials in cIAI and cSSTI demonstrated equivalent outcome relative to comparators in patients with concomitant bacteraemia. It is important to note that no cases of Acinetobacter bacteraemia were...

Table IIIa. USA tigecycline susceptibility breakpoints for different species (FDA)

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>MIC (mg/l)</th>
<th>Zone diameters (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S I R</td>
<td>S I R</td>
</tr>
<tr>
<td>S. aureus (incl. methicillin-resistant isolates)</td>
<td>≤0.5*</td>
<td>≥19 - -</td>
</tr>
<tr>
<td>Streptococci other than S. pneumoniae</td>
<td>≤0.25*</td>
<td>≥19 - -</td>
</tr>
<tr>
<td>S. pneumoniae</td>
<td>≤0.06*</td>
<td>≥19 - -</td>
</tr>
<tr>
<td>Enterococcus faecalis</td>
<td>≤0.25*</td>
<td>≥19 - -</td>
</tr>
<tr>
<td>Enteroctobiaceae*</td>
<td>≤2</td>
<td>≥19 15 - 18 ≤14</td>
</tr>
<tr>
<td>Haemophilus influenzae</td>
<td>≤0.25*</td>
<td>≥19 - -</td>
</tr>
<tr>
<td>Anaerobes‡</td>
<td>≤4</td>
<td>N/A N/A N/A</td>
</tr>
</tbody>
</table>

*The current absence of resistant isolates precludes defining any results other than ‘susceptible’.†Tigecycline has decreased in vitro activity against *Morganella spp.*, *Proteus spp.* and *Providencia spp.*.‡Agar dilution.

Table IIIb. European* (EUCAST) and British† (BSAC) tigecycline susceptibility breakpoints for different species

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>MIC (mg/l)</th>
<th>Zone diameters (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S I R</td>
<td>S I R</td>
</tr>
<tr>
<td>S. aureus</td>
<td>≤0.5</td>
<td>≥26 - ≤25</td>
</tr>
<tr>
<td>Streptococci other than S. pneumoniae</td>
<td>≤0.25</td>
<td>≥25 20 - 24 ≤19</td>
</tr>
<tr>
<td>E. coli</td>
<td>≤0.25</td>
<td>≥21 - ≤20</td>
</tr>
<tr>
<td>Enteroctobiaceae other than E. coli</td>
<td>≤1</td>
<td>≥24 20 - 23 ≤19</td>
</tr>
<tr>
<td>Enteroctobiaceae other than E. coli</td>
<td>≤1</td>
<td>NR NR NR</td>
</tr>
<tr>
<td>A. baumannii†</td>
<td>≤1</td>
<td>≥24 20 - 23 ≤19</td>
</tr>
</tbody>
</table>

*For Enteroctobiaceae other than *E. coli*, the BSAC do not recommend disc susceptibility testing.†EUCAST.

MIC = minimum inhibitory concentration; S = susceptible; I = intermediately resistant; R = fully resistant; N/A = not available.
reported in these studies and no bacteria had an MIC of 1 mg/l.

- Further evidence of efficacy in bacteremic patients emanated from the trial analysis of CAP due to *S. pneumoniae*, and as such tigecycline has been registered by the FDA for CAP caused by *S. pneumoniae*, including cases with concurrent bacteremia.

- Recently, pooled results from 8 phase III clinical trials comparing the safety and efficacy of tigecycline in subjects with secondary bacteremia were published. Cure rates were similar to comparative standard therapies.

- The data suggest that tigecycline’s extensive tissue distribution allows for eradication of the source of secondary bacteremia.

- Clinicians should be cautious when using tigecycline for the treatment of patients with suspected or proven bacteremia, and use should preferably be guided by the MIC.

7.4 *In vitro* and *in vivo* data for tigecycline activity against MDR Enterobacteriaceae (ESBL producers or carbapenem-resistant (ertapenem and/or imipenem and/or meropenem) isolates)

- A recent review reported on the *in vitro* activity of tigecycline against ESBL-producing and carbapenem-resistant Enterobacteriaceae (due to either the new *K. pneumoniae* carbapenemases or metallo-β-lactamases):

 - Tigecycline was active against >99% of MDR *E. coli* (N=1 936; of which 1 636 strains were ESBL producers and 14 carbapenem resistant) using either FDA (MIC ≤ 2 mg/l) or EUCAST (MIC ≤ 1 mg/l) susceptibility criteria.

 - Susceptibility rates for MDR *K. pneumoniae* were 91.2% (N=2 627) and 72.3% (N=1 504) using FDA and EUCAST criteria, respectively. For ESBL-producing isolates susceptibility was 92.3% (N=2 030) and 72.3% (N=1 284) and for carbapenem-resistant strains 94.8% (N=402) and 71.9% (N=231), respectively.

 - Susceptibility rates for ESBL-producing *Enterobacter* spp. were 91.3% (N=80) and 77.6% (N=91), and for carbapenem-resistant strains 80.3% (N=102) and 57.8% (N=102), respectively.

- Clinical efficacy in infections caused by ESBL-producing and carbapenem-resistant *Enterobacteriaceae* has been reported in 33 patients in 10 studies (cIAI and complicated pelvic infections N=16, bacteremia N=8, pulmonary infection N=6, urinary tract infection N=3):

 - Outcome was favourable in 69.7% of patients (23/33) and classified as uncertain in 3.

 - Tigecycline was administered as monotherapy in 23 patients and as combination therapy (mostly together with polymyxin) in 7.

 - Of note, two recurrences of empyema occurred in 1 patient with an associated rise in tigecycline MIC (from 0.75 to 2 mg/l).

 - Prolonged therapy for microbiological and clinical cure (>21 days) was required in 5 cases.

- It is envisaged that tigecycline will be used in South Africa for directed therapy, particularly for carbapenem-resistant strains, where apart from polymyxin and possibly fosfomycin, no alternative Gram-negative antibiotics are available.

7.5 *In vitro* and *in vivo* data for tigecycline activity against *Stenotrophomonas maltophilia*

- The majority of clinical isolates of *S. maltophilia* are inherently resistant to most antimicrobial agents, and as such few therapeutic options remain.

- Recent studies have reported the *in vitro* activity of tigecycline against this pathogen:

 - Tigecycline activity was reported for 131 isolates from patients hospitalised in intensive care units (ICUs) in a multi-centre, multi-national survey and for 108 isolates from ICUs in Canada.

 - In both studies tigecycline and trimethoprim/sulfamethoxazole were the most active agents, with the MIC₉₀ and MIC range reported as 2 and 4 mg/l and 0.12 - 8 and 0.25 - 16 mg/l, respectively. Applying the provisional breakpoint of ≤2 mg/l used by most studies to date, 90.1% of strains were susceptible.

 - In contrast to the above reports, in which the percentage of isolates cultured from blood was not known, Livermore et al. recently published the susceptibility of *S. maltophilia* (N=142) isolated from blood cultures in the UK and Ireland; 89% were susceptible at a breakpoint of ≤1 mg/l, with a reported MIC₉₀ of 1 mg/l and an MIC range of 0.12 - 4 mg/l.

 - With regard to clinical efficacy, few data are available. One case report described successful treatment of a late-onset nosocomial pneumonia caused by an MDR strain of *S. maltophilia*.

7.6 *In vitro* and *in vivo* data for tigecycline activity against *Clostridium difficile*

- Reported MIC₉₀ values for *C. difficile* are low, ranging from 0.06 to 0.25 mg/l.

- The median faecal concentration of tigecycline is 5.6 mg/l (range 3.0 - 14.1 mg/l) after intravenous administration of a 100 mg loading dose followed by 50 mg twice daily, which is significantly higher than that of metronidazole or its metabolite (median value 0 mg/l, range 0 - 10.2 mg/l).

- It has been demonstrated that tigecycline does not induce proliferation of the organism or enhance cytotoxin production in a human gut model.

- The intravenous administration of tigecycline is more appealing than oral vancomycin for critically ill patients with *C. difficile* infection (CDI), as gut mobility is often impaired and in addition it is questionable whether a vancomycin enema can deliver sufficient intra-colonic concentrations, particularly to the transverse and ascending colon.

- Successful treatment of severe refractory CDI has recently been described in case reports in which conventional...
therapy with metronidazole or vancomycin had failed and colectomy had been considered; all of these patients improved within a week and no relapses were observed.

8. Appropriate use

Tigecycline has been studied as empiric monotherapy in cIAI and cSSTI and severe CAP and would be an appropriate option as monotherapy for the treatment of patients with cIAI and cSSTI, which are the currently registered indications in South Africa, in the following circumstances:

8.1 Empiric monotherapy

- In the elderly or patients with significant co-morbidity who have received frequent antibiotic therapy or are from long-term care facilities and as such are at risk for resistant bacteria such as ESBL-producing strains or polymicrobial MDR infections (excluding Pseudomonas spp.).

- Serious and complicated infections due to MRSA or other gram-positive bacteria.

- Infections with organisms likely to be susceptible to tigecycline in patients with β-lactam allergy.

- To facilitate heterogeneous antibiotic use and reduce pressure on other agents currently in use as a component of antibiotic stewardship. This might be particularly relevant for the treatment of ESBL-producing Enterobacteriaceae, which has put significant pressure on carbapenems.

8.2 Directed monotherapy

- Polymicrobial infections with MDR organisms excluding Pseudomonas spp., Proteus spp., Providencia spp. and Morganella spp. such as serious and complicated infections due to mixed infections of MRSA or ESBL-producing organisms.

- MRSA infections in the presence of renal dysfunction as an alternative to linezolid.

- As such, tigecycline might be a treatment option for hetero-vancomycin intermediate-resistant (h-VISA, MIC ≥2 mg/l), vancomycin intermediate-resistant (VISA, MIC = 8 mg/l) and vancomycin-resistant (VRSA, MIC ≥16 mg/l) S. aureus infections as well as VRE infections.

8.3 Directed combination therapy

- It is uncertain whether tigecycline will be effective with more resistant Acinetobacter spp. infections (MICs ≥2 mg/l). However, if no other antibiotic is available according to susceptibility testing, it may be utilised as salvage therapy in combination with other agents. Combinations with polymyxin and/or fosfomycin and/or rifampicin have mostly been reported, but as has been stated, insufficient data exist to make firm recommendations.

- If used in these circumstances, pharmacokinetic/pharmacodynamic data suggest that it should be used at higher than the registered dose.

9. Inappropriate use

9.1. Tigecycline is not an appropriate empiric option as monotherapy for the treatment of patients with cIAI at risk of infection with P. aeruginosa, and in particular those with recurrent infection and/or failure of source control.

9.2. Tigecycline is not an appropriate empiric monotherapy option for the treatment of patients with cSSTI where P. aeruginosa is a predominant organism, such as chronic diabetic foot infection.

10. Conclusion

This statement has been developed to promote the appropriate use of tigecycline in SSTIs and IAs, which are the current registered indications for this antibiotic in South Africa. In the USA tigecycline is also registered for CAP, and when this indication is registered in South Africa, the statement will be updated. Studies are also currently ongoing for other indications and in children.

11. References

13. Endorsement

Endorsed by the Association of Surgeons of South Africa, the Trauma Society of South Africa, the Federation of Infectious Diseases Societies of Southern Africa, the Critical Care Society of Southern Africa and the South African Thoracic Society.

14. Disclaimer

This statement is published for educational purposes only. The recommendations are based on currently available scientific evidence together with the consensus opinion of the authors.

15. Working group

A J Brink (Amath National Laboratory Services, Milpark Hospital, Johannesburg), D Bizos (Acting Head, Surgical Gastro-enterology, Department of Surgery, Charlotte Maxeke Johannesburg Academic Hospital and University of the Witwatersrand, Johannesburg), K D Boffard (Chief Specialist and Head, Department of Surgery, Charlotte Maxeke Johannesburg Academic Hospital and University of the Witwatersrand, Johannesburg), C Feldman (Division of Pulmonology, Department of Medicine, Charlotte Maxeke Johannesburg Academic Hospital and University of the Witwatersrand, Johannesburg), D C Groolan (Specialist Surgeon and Intensivist, Sandton Medi-Clinic, Life Fourwys Hospital and University of the Witwatersrand, Johannesburg), J P Pretorius (Surgical and Trauma ICU, Department of Surgery, Steve Biko Academic Hospital, University of Pretoria), G A Richards (Director Critical Care and Principal Physician, Division of Pulmonology, Department of Medicine, Charlotte Maxeke Johannesburg Academic Hospital and University of the Witwatersrand, Johannesburg), M Senekal (Pathcare, Panoma Mediclinic, Cape Town), E Steyn (Trauma and Transplant Surgeon, Christiaan Barnard Memorial Hospital, Cape Town), N Welkovic (Specialist Surgeon and Intensivist, Units Hospital and Division of Critical Care, Steve Biko Academic Hospital, University of Pretoria).

12. Acknowledgements

The Working Group meeting was sponsored through an unrestricted educational grant from Wyeth. Representatives from the company attending the meeting had observer status.

