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The Joint United Nations Programme on HIV/AIDS (UNAIDS) 
reported that ~37 million people were living with HIV globally in 
2017, with an estimated 17 million accessing antiretroviral therapy 
(ART).[1] South Africa (SA) has one of the highest burdens of HIV in 
the world. In 2017, UNAIDS reported that there were an estimated 
7.1 million people living with HIV in SA, 270 000 new HIV infections 
and ~110 000 AIDS-related deaths. Of individuals living with HIV, 
only ~45% had suppressed viral loads (VLs).[1] The SA comprehensive 
treatment plan involves an approach to ensure that 90% of individuals 
infected with HIV are detected, 90% of those diagnosed are treated, 
and viral suppression is attained in 90% of all those under treatment 
(the 90-90-90 objective).

HIV infection is characterised by progressive depletion of the 
CD4+ T-cell population. This reduction increases the risk of latent 
tuberculosis (TB) reactivation 20-fold,[2] and the risk of developing 
active TB has been shown to increase significantly shortly after initial 
infection.[3] Martinson et al.[4] showed that 60 - 80% of people with 

TB in southern Africa are HIV-positive, emphasising that TB is an 
important common opportunistic infection among HIV-infected 
individuals.

The use of combination ART (cART) in HIV/AIDS patients is 
characterised by an increase in CD4+ cell counts and a decrease 
in VL to undetectable levels.[5] However, management of HIV 
infection in TB co-infected patients has been a challenge, in part 
owing to drug interactions between rifampicin and non-nucleoside 
reverse transcriptase inhibitors and protease inhibitors and concerns 
about adherence and virological failure.[6] In a 2001 report, the 
World Health Organization (WHO) emphasised the need to further 
strengthen TB control between 2002 and 2020, as otherwise a billion 
people will be newly infected with Mycobacterium tuberculosis, more 
than 150 million will develop active TB disease, and 36 million will 
die of TB.[7] Day et al.[8] suggested that active TB accelerates HIV 
disease progression, but not many data are available to confirm 
or refute this hypothesis. Day et al.[8] argued that although ART is 
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Conclusions. The model confirms that virological failure, coupled with developing active TB while on cART, increases mortality rates 
irrespective of patient CD4+ count status. It also suggests that while TB at the time of cART initiation does not increase the risk of viral 
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required for a major effect on survival in HIV-infected individuals, 
prevention of TB is important for reduction of HIV-related morbidity 
and mortality. Virological failure and TB control therefore need to 
be considered in tandem to minimise the consequences of partial or 
incomplete viral suppression.

Virological failure is due to patient factors such as non-adherence 
to treatment, or ART regimen factors such as peripheral neuropathy 
and lactic acidosis, drug resistance or drug-drug interactions. 
Constant monitoring of VL levels (states) helps in avoiding the 
unnecessary switch to second-line therapy that could be made when 
clinical (WHO stage) and immunological (CD4+ cell counts) criteria 
alone are used. Routine VL monitoring helps in the early detection 
of virological failure[9] as patients are observed making random 
transitions from one VL state to another.

The random movement from one VL state to another is regarded 
as a stochastic process. HIV/AIDS progression is divided into 
various states of the disease based on VL measurement, including 
the endpoints death state and withdrawal from study (loss to follow-
up). Stochastic processes allow random movements between VL 
states before an HIV/AIDS patient is finally absorbed into the death 
state.[10] Patients are monitored only at visit times, which means 
that the exact time the transition occurred is not known.[11] When 
transition times are not known and interval-censored observations 
are present, homogeneous and non-homogeneous Markov processes 
are an important field of research into stochastic processes.[12] Non-
homogeneous models are particularly important when transition 
rates between disease states are not constant but allowed to change 
with time to mimic better, observed reality.

The Markov model is an appropriate stochastic approach 
when the present state of the patient summarises all previous 
information (known as the history or natural filtration of the 
process). Time-homogeneous Markov models have been widely used 
in the modelling of various disease progressions such as cancer,[13,14] 
stroke[15] and diabetic retinopathy.[16] However, the assumption of 
time-homogeneity is unrealistic in the sense that over long periods 
the diseases evolve, resulting in changes in transition intensities. The 
use of time-homogeneous models then puts severe limitations on 
disease history behaviour. In particular, when dealing with HIV, it is 
more realistic to assume that science and medicine evolve, so the rate 
at which severity of the disease changes in patients is likely to alter as 
newer medications improve the quality of their lives.[15] The science 
and medicine evolution justifies the need for continuous-time non-
homogeneous models in analysing disease progressions. The problem 
can be addressed by using piecewise constant transition rate Markov 
models that preserve the tractability of the constant rates.[17]

In the present study, a non-homogeneous Markov process, using 
a piecewise constant transition rate model approach, was used to 
model the progression of HIV/AIDS in patients with TB co-infection. 
The states of the Markov process are based on VL measurements 
followed by absorbing states, death or withdrawal from study. The 
VL states are defined as follows: (1) VL <50 copies/mL; (2) 50 ≤ VL 
< 10 000; (3) 10 000 ≤ VL < 100 000; (4) 100 000 ≤ VL < 500 000; and 
(5) VL ≥ 500 000. State 1 is accessible from any VL state. The effects of 
virological failure and TB, among others, on HIV/AIDS progression 
are assessed. The inclusion of the effects of virological failure on 
HIV progression in patients with TB co-infection prompted the 
current research and analysis, and also the use of a continuous-time 
non-homogeneous Markov model in which the undetectable VL is 
accessed from any of the five VL states.

The SA description of virological failure is as follows: (i) two 
consecutive VLs >1 000 copies/mL after previous suppression; (ii) 

one VL  >1 000 copies/mL after previous suppression followed by 
a change in treatment; and (iii) one VL  >1  000 copies/mL after 
6 months on ART without suppression. This is in line with the Adult 
Guideline from the National Department of Health, which proposed 
a virological failure threshold of 1 000 copies/mL.[18]

Although VL level monitoring may not be routinely available in 
resource-limited settings, this monitoring helps in the detection of 
treatment failure and in avoiding the unnecessary switch to second-
line treatment that could take place when clinical and immunological 
criteria alone are used.[19] Treatment failure is defined clinically as 
a new or recurrent event indicating severe immunodeficiency or 
immunological failure (persistent CD4+ T-cell counts <100 cells/µL) 
after 6 months of treatment. 

Objectives
To report on the development of a continuous-time non-homo-
geneous Markov model with states based on VL to assess the 
progression of HIV/AIDS in patients on cART.

Methods 
Ethical considerations
The data collection procedures used in this study were approved by 
the Research Ethics Committee of the University of Venda, SA (ref. no. 
SMNS/13/ MBY/01/0625), in accordance with the 1964 Declaration 
of Helsinki and its subsequent amendments. Additionally, permission 
to access health facilities was obtained from the Limpopo Provincial 
Department of Health, SA, and the collaborating health facilities. 
Informed consent was obtained from study participants prior to their 
involvement, and data obtained were stripped of personal identifiers 
to ensure anonymity and confidentiality of the participants.

Data description
The study cohort comprised 399 HIV/AIDS patients undergoing 
treatment follow-up at a rural wellness clinic in Bela Bela, northern 
SA. The data were collected from 2004 to 2009. TB tests were carried 
out at enrolment and also at every follow-up visit. At the time of data 
extraction, patients with TB were on TB treatment. At enrolment, 
the baseline VL, baseline CD4+ cell count, and data on the presence 
of active TB were retrieved. In this study, a TB case was the outcome 
of a diagnostic process comprising a combination of laboratory 
(microscopy and culture) and clinical investigations.

Of the patients, 338 had a VL >10 000 copies/mL at baseline and 
55 a VL of ≤10 000 copies/mL; 353 patients had a baseline CD4+ cell 
count ≤350 cells/µL and 46 a baseline count >350 cells/µL. Females 
comprised 69.1% (n=276) of the cohort. The variable age had a 
skew value of –0.44 at baseline, an indication that the majority of 
the patients were young adults. The variables age at baseline, VL at 
baseline and CD4+ at baseline are described further in Table 1.

Of the 399 patients, 292 (73.2%) had TB co-infection; 261 of 
the HIV/TB co-infected patients (65.4% of the total) already had 
active TB when they were enrolled at the clinic, but 89 patients 
(22.3%) developed active TB while on treatment. After treatment, 
58 (22.2%) of the patients who had been cured of TB became actively 
infected once more. Of the patients who were HIV/TB co-infected 
at enrolment, most (n=168) were given initial combination therapy 
of stavudine (d4T)-lamivudine (3TC)-efavirenz (EFV); 76 received 
initial combination therapy of d4T-3TC-nevirapine (NVP), 
6  received zidovudine (AZT)-3TC-lopinavir/ritonavir (LPV/r), 
5 received abacavir (ABC)-AZT-3TC, and 4 received d4T-3TC-
LPV/r. These drugs belong to the nucleoside reverse transcriptase 
inhibitor (NRTI) class.
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Although NRTIs are relatively affordable, they cause varying degrees 
of myopathy and neuropathy in the long term.[20] AZT causes 
myopathy, didanosine (ddI) and 3TC cause neuropathy, and d4T 
causes neuropathy, myopathy and lactic acidosis. Patients may also 
experience virological failure. In this article, treatment failure is 
defined clinically and immunologically. The effect of lactic acidosis 
and peripheral neuropathy, together with other covariates, on the 
progression of HIV is analysed.

Limitations of the data
This was a retrospective set of data. Information on other comorbidi-
ties or opportunistic infections in the patients was not available, 
and the observations should be understood in the context of these 
limitations. The intended outcome of cART is to suppress VLs to 
undetectable levels, in the absence or presence of comorbidities.

Piecewise constant transition rate Markov model
Modelling the non-homogeneous Markov model can easily be done 
using a piecewise constant intensities approach. According to Saint-
Pierre et al.[21] in an analysis of asthma, this approach involves the 
inclusion of time-dependent covariates in a Markov model, making it 
easier to deal with non-homogeneous Markov models. The approach 
partitions the time axis into r continuous and disjoint intervals

, where  and , and 
assumes constant transition intensities in different time intervals.

Consider a vector  of 
artificially time-dependent covariates defined as:

   

where . The model with transition intensities 
is as follows:

   

This approach to non-homogeneity in a Markov process is a stepwise 
method that assumes constant transition intensities in different time 
intervals. The parameters of this model are the baseline 

transition intensities , which represent transition intensities in 

the interval , and the vector of regression coefficient  
associated with artificially time-dependent covariates. For this 
model, transition intensities are step-functions of time and defined 

for each interval as follows:

for .
Incorporating the effects of covariates, represented by the vector z, 

the model becomes:
   

where  is the log-linear effect relating to the instantaneous rate 
of transition from state i to state j to the covariate z.

Computing  for a  in segment  entails multiplying 
all the transition matrices across the various intervals, as shown 
below:

   

where  is the transition probability matrix obtained using 

 for the  segment denoted by . If subjects are observed 
on an equal-spaced grid and segments are divided up along these 

time points, then  would simply be the  element 
of the matrix in the above equation. When data are not equally 
spaced, then observations would be considered missing at the 
breakpoints. To resolve this, a model that accounts for all possible 

pathways between the last observed state in the segment  and 

the first observation in segment  was suggested. For example, if 

a breakpoint  is created between two points  and , then via 
Chapman-Kolmogorov equations, the likelihood contribution from 

interval  for individual x can be found as:

   
for states i and j.

Model formulation
Patients were put on cART at time t=0. The patients were monitored 
after 3 months (0.25 years) of cART and thereafter at follow-up 
intervals of 6 months (0.5 years). Follow-up was done for a maximum 

Table 1. Descriptive summary of age, VLBL and CD4+BL
Age (years) VLBL (copies/mL) CD4+BL (cells/µL)

Minimum 15 <50 (undetectable) 16
First quartile 32 21 334 38
Mean 38.3 138 208 163
Median 39 67 995 116
Third quartile 47 201 445 206
Maximum 77 >500 000 1 202

VLBL = viral load at baseline; CD4+BL = CD4+ cell count at baseline.
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of 5 years, but owing to some deaths and withdrawal cases associated 
with the data, the average follow-up time for each patient in the study 
was 3.5 years. At follow-up times, the effectiveness of cART was 
assessed by changes in the HIV VL. Attainment of a suppressed VL 
below the level of detection within the first 6 months indicated good 
adherence to treatment and effectiveness of cART. In this study, the 
level of detection was 50 viral RNA copies/mL.

VLs for each individual during the course of treatment were 
classified into states based on the severity of the patient’s condition, 
as follows:
   

States i = 1, 2, 3, 4, 5 are the live/transient states and states 6 and 
7 are the absorbing states. Transitions from state i to i + c, for c > 0, 
represent disease progression to worse states and transitions from 
state i to state i – c, for c > 0, represent disease progression to better 
states. At t=0 there were 2 patients in VL state 1; 42 in state 2; 174 
in state 3; 135 in state 4; and 45 in state 5. This confirms that at 
treatment initiation, most patients had a VL between 10  000 and 
100 000 copies/mL (state 3).

Table 2 is a state table that shows the possible transitions, from 
state i to state j, j = i ± c, that occurred during the study period.

Table 2 shows that most states are accessible from each other. Of 
interest is the undetectable VL state (state 1), which is accessible from 
all transient states. Based on these transitions, the transition diagram 
in Fig. 1 is therefore proposed.

The arrows in the diagram represent possible transitions between 
states. Green arrows represent viral suppression. Blue arrows 
represent viral rebound and red arrows represent absorption into the 
death state. Orange arrows represent loss to follow-up. Transitions 
between states can be represented by the transition matrix below:

   

The force of transition from state i to j is defined as:
   

qij, for i = 1, …,5 and j = 1, …,7, vary over time and satisfy the

following conditions:  and
 
  . Once the transition intensities are 
estimated, the probabilities that state j is next subject in the long 
run, on condition that the patient was in state i, is given as 

, for each i and j where , such 

that  is the total time spent in state i before a jump to state 
j. For example,

   
The effects of the covariates gender, age, virological failure 

(VF), treatment failure (TF), VL level baseline (VLBL), peripheral 
neuropathy (PN), having TB before enrolment (TBB4), developing 
TB while on ART (TBEN), lactic acidosis (LA) and the effect of time 
on transition intensities were assessed. Peripheral neuropathy and 
lactic acidosis are long-term effects of the NRTI class. Virological 
failure is defined as having a VL of at least 1 000 copies/mL in two 
consecutive visits or having a VL >1 000 copies/mL in the first 6 
months of cART initiation. In this article, treatment failure is defined 
immunologically and clinically. These covariates are coded as follows:

   

So that the piecewise constant Markov model becomes:
   

Table 2. State table, n transitions
To (j)

From (i) 1 2 3 4 5 6 7
1 1 185 94 22 2 0 22 53
2 198 105 27 4 2 14 24
3 105 71 34 2 0 27 14
4 55 70 8 2 4 17 0
5 13 22 0 8 0 3 2

Viral suppression                     Viral rebound                     Death                        WithdrawalKey:

Fig. 1. Transition diagram.
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Results
In this section, a continuous-time non-homogeneous Markov model 
for the effects of time t ≥ 0.5 years, VL baseline, gender, having TB 
co-infection, having active TB before enrolment, developing active 
TB on treatment, peripheral neuropathy, lactic acidosis, virological 
failure and treatment failure on virology is defined by the equation:

   

The parameter  is the baseline transition intensities for intervals

[0, 0.5 year],  is the vector of regression coefficients associated 
with the artificial time-dependent covariates

  as defined earlier, and  is the vector of 
regression coefficients associated with covariates z=[VLBL, Gender, 
TB, TBEN, TBB4, PN, LA, VF, TF]′. The results from the fitted model 
are shown in Table 3.

Results show that when the VL of a patient is <100 000 copies/mL, 
rates of viral suppression are higher than rates of viral rebound. The 
undetectable VL (state 1) is accessible from all the states. The rate 
of attainment of an undetectable VL depends on the condition of a 
patient. Patients with the highest viral copies/mL (state 5) have the 
lowest risk of attaining an undetectable VL, whereas patients with the 
lowest viral copies/mL (state 2) have the highest chance of doing so.

Developing active TB while on ART (TBEN) increases the rates 
of viral rebound from an undetectable level (state 1) to a VL 
measurement >50 copies/mL and <10 000 copies/mL (state 2). If the 
TB is detected at enrolment (TBB4), there are reduced rates of viral 
rebound from state 1 to state 2. However, detecting TB co-infection, 

be it at enrolment or during the course of treatment, reduces viral 
rebound from state 1 to state 2. Virological failure is experienced 
from state 1 to state 2. Other factors that contribute to viral 
failure from undetectable levels are peripheral neuropathy and lactic 
acidosis. From 0.5 years of treatment and beyond, there is reduced 
viral rebound from undetectable levels. More time on cART therefore 
reduces rates of viral rebound.

Table 3 shows virological rebound from a VL state between 50 
and 10 000 copies/mL (state 2) to a VL state between 10 000 copies/
mL and 100  000 copies/mL (state 3). The virological failure is due 
to effects of developing TB on treatment (TBEN), having TB at 
enrolment (TBB4), lactic acidosis, treatment failure and having a VL 
baseline >10 000 copies/mL at enrolment.

Patients mostly experience virological failure in state 4 (VL 
baseline between 100  000 and 500  000 copies/mL). These patients 
experience a viral rebound back to a VL level >500  000 copies/mL 
(state 5). Males are also at higher risk of experiencing a rebound from 
state 4 to state 5 compared with their female counterparts.

Results show an increased rate of mortality (state 6) from an 
undetectable VL (state 1) for patients who enrolled with a VL baseline 
>10  000 copies/mL, patients who developed active TB while on 
cART, and patients who experienced virological failure. Patients who 
develop active TB while on cART have accelerated rates to mortality 
regardless of CD4+ status.

Next we estimate long-run probabilities of state j being the next state 
given the condition that the patient was initially in state i, referred to 
as the jump process. This is when a Markov process is observed at 
the times it makes transitions to a new state. In other words, a jump 
process is a stochastic matrix R of probabilities where each row sums 
to one on the state space Xt, which gives the conditional probability 

Table 3. Effects of different variables on transition intensities based on viral load states

State i - j
Baseline
Qij

(0)  VLBL Gender  TB TBEN  TBB4 PN  LA  VF  TF
Time
[0.5,∞]

State 2 - 1 2.333 –0.063 0.191 –1.624 0.216 0.973 0.767 –0.038 –1.337 –0.353 –1.003
State 3 - 1 0.966 0.424 0.479 0.419 –0.504 –0.121 1.523 1.346 –1.091 –0.585 –2.719
State 4 - 1 0.545 0.145 0.259 0.137 0.413 0.576 –0.014 0.517 –0.124 –0.119 –0.778
State 5 - 1 0.427 0.222 –0.203 –0.201 0.532 –0.008 –0.229 0.244 –0.055 –0.039 –0.879
State 1 - 2 0.410 0.017 –0.016 –0.539 0.032 –0.139 0.116 0.18 1.985 –0.08 –1.394
State 3 - 2 2.775 –0.022 –0.660 0.460 –0.625 –0.832 –0.601 –0.298 –0.232 –1.046 –2.041
State 4 - 2 4.978 0.159 –0.583 –0.375 –0.355 1.219 –0.503 0.069 –0.049 0.229 –1.626
State 5 - 2 2.428 0.129 –0.338 0.621 0.441 1.080 0.200 –0.077 0.289 –0.076 –1.432
State 2 - 3 0.852 1.403 –0.789 –1.530 0.493 1.010 –0.132 0.685 1.265 0.879 –0.660
State 4 - 3 0.148 0.082 –0.068 –0.131 –0.026 –0.071 0.147 –0.057 –0.010 –0.006 –0.132
State 3 - 4 0.439 0.315 –0.195 0.516 0.896 0.590 0.452 –0.803 0.339 –0.522 –0.023
State 5 - 4 1.108 0.315 0.272 –0.521 1.004 –1.475 –0.223 –0.759 –0.069 –0.064 –1.578
State 4 - 5 0.456 0.253 0.695 –0.953 –0.429 –0.775 –0.315 –0.852 0.748 –0.044 –1.222
State 1 - 6 0.010 0.809 –0.742 –1.451 0.560 –2.716 –1.120 –1.316 0.024 –0.103 –2.345
State 2 - 6 0.032 0.453 0.572 –0.316 1.151 –2.083 –0.232 –1.001 –0.333 –0.153 –0.396
State 3 - 6 0.040 0.064 0.116 –0.163 0.280 –0.915 0.006 –0.404 –0.290 –0.201 –0.434
State 4 - 6 0.138 0.092 0.014 –0.101 0.459 –0.423 –0.188 –0.133 –0.034 –0.029 0.398
State 5 - 6 0.106 0.018 0.185 –0.078 0.041 –0.157 –0.032 –0.050 –0.032 –0.002 –0.053
State 1 - 7 0.037 0.564 –0.577 –0.990 –0.081 –1.572 –1.518 –1.733 0.087 0.235 0.776
State 2 - 7 0.103 –0.524 –0.036 0.010 0.161 0.303 –0.448 –1.556 0.007 –0.126 –0.139
State 3 - 7 0.080 –0.018 0.016 –0.176 –0.005 –0.218 –0.077 –0.217 –0.005 –0.171 0.141
State 4 - 7 0.056 –0.048 0.034 0.014 –0.099 0.069 –0.005 0.037 0.015 0.004 0.214
State 5 - 7 0.101 0.009 0.157 –0.163 –0.084 –0.118 –0.0222 –0.036 –0.027 –0.001 0.248
–2LL 2 869.38                    

VLBL = viral load at baseline; TB = tuberculosis, either at entry or while on cART; TBEN = developing TB during cART; TBB4 = tuberculosis before cART initiation;  
PN = peripheral neuropathy; LA = lactic acidosis; VF = virological failure; TF = treatment failure; cART = combination antiretroviral therapy; –2LL = –2 × log likelihood.
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of the next state an individual goes to, after 
leaving state i. If qii > 0, then given that there 
is a jump to a different state, implies the 
patient will not stay in state i, the patient 
makes a jump out of state i resulting in Rii = 
0, and if qii = 0, then the patient will never 
leave state i, implying that Rii = 1 (in states 6 
and 7). The computed matrix of probabilities 
of each state being next (also known as 
the jump process), together with the mean 
sojourn times in each state, fully define a 
continuous-time Markov model. This is a 
more intuitively meaningful description of 
a model than the transition intensity matrix. 
The matrix for the probabilities that the next 
state after state i is state j is approximated as

 after state i is, for each i and

j, such that  is the force of transition 
from state i to state j and qii is the total force 
of transition out of state i. For example, the 
probability that state 2 is next given that the 
patient is initially in state 1 is given by

 
as shown in Table 4.

The results in Table 4 show an increase in 
the probabilities of transition to death with 
increasing VL states, resulting in patients 
with VL levels >500  000 copies/mL having 
the highest chances of transitions to death. 
For patients with a VL >10  000 copies/mL 
(state 3, state 4 and state 5), probabilities 
of viral suppression to levels between 50 
and 10  000 copies/mL (state 2) are higher 
compared with transitions to any other states. 
The results generally show higher chances of 
transitions to viral suppression than viral 
rebound, an indication of treatment efficacy.

Fig. 2 shows the plots of percentage preva-
lence in each state from time of treatment 
commencement to the end of the study 
period. The model gives an almost perfect 
fit of the observed data. The plots show an 
increase in percentage prevalence during the 
first 0.5 years for state 1 or the undetectable 
VL state. After 1.5 years, there is a slight 
drop in percentage prevalence from state 1. 
This could be attributed to factors such as 
developing active TB on cART, virological 
failure, peripheral neuropathy and lactic 
acidosis, as shown in Table 3.

Discussion
In this study, a continuous-time non-
homogeneous Markov model was used to 
model the progression of HIV/TB co-infected 
patients receiving cART at an SA rural clinic. 
Non-homogeneity of transition intensities 

was approached using a piecewise constant 
model, allowing transitions to vary between 
different time segments. The effects of 
VL prior to treatment initiation, gender, 
developing active TB while on cART, having 
TB at enrolment, peripheral neuropathy, lactic 
acidosis, virological failure and treatment 
failure on HIV/AIDS progression defined by 
transition intensities were assessed.

Results from the analysis show a 
bidirectional movement between HIV 
states, thus revealing a possibility of viral 
rebound and viral suppression. However, 
transitions to suppressed VLs are higher 
than transitions to viral rebound. This is 
quite encouraging, as it shows efficacy of 

ART in reducing VL as expected. Results 
also show that, from any VL state, an 
undetectable VL state can be attained. 
The attainment of undetectable VL levels 
varies from state to state, with patients at 
lower VL levels having better chances of 
attaining undetectable VLs than patients 
at higher VL levels. The undetectable viral 
load is achieved during the first 0.5 years 
of treatment uptake, according to our 
findings, which show a rapid increase in 
state 1 (undetectable VL) prevalence within 
the first 0.5 years.

Findings from this study reveal that, 
although the undetectable VL state can be 
attained from any HIV state, there are some 
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Fig. 2. Percentage prevalence in each state from time of treatment commencement to 3 years after 
commencement.

Table 4. Probability of each state being next (jump chain)

From (i)
To (j)

State 1 State 2 State 3 State 4 State 5 State 6 State 7
State 1 0 0.897 0 0 0 0.022 0.081
State 2 0.703 0 0.257 0 0 0.010 0.031
State 3 0.225 0.645 0 0.102 0 0.009 0.019
State 4 0.086 0.787 0.023 0 0.072 0.022 0.009
State 5 0.102 0.582 0 0.266 0 0.025 0.024
State 6 0 0 0 0 0 1 0
State 7 0 0 0 0 0 0 1
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factors that increase the rate of viral rebound from undetectable levels 
to VLs between 50 and 10 000 copies/mL. The results reveal increased 
rates (by >7-fold) of virological failure from undetectable VL levels 
to VLs between 50 and 10 000 copies/mL. This increase is attributed 
to the development of active TB while on ART, lactic acidosis and 
peripheral neuropathy, with the development of active TB on cART 
the major cause. However, if TB is detected at enrolment, rates of 
viral rebound from undetectable levels are reduced. This finding 
is corroborated by studies by UNAIDS[22] suggesting that early 
diagnosis and timely treatment of TB reduce the risk of virological 
rebound.

The risk of virological failure from between 50 and 10 000 copies/
mL to a state between 10 000 and 100 000 copies/mL increased by 
~3.5 times for patients who had TB at enrolment, developed TB 
on cART, or had lactic acidosis, treatment failure or a VL baseline 
>10 000 copies/mL at enrolment. Developing active TB on cART had 
the highest contributory effect to virological failure.

Our findings reveal that patients generally experience virological 
failure in state 4 (i.e. VL baseline between 100  000 and 500  000 
copies/mL). These patients experience a viral rebound to a VL 
level >500 000 copies/mL (state 5). Virological failure coupled with 
development of active TB while on ART increases rates of HIV/AIDS 
progression as well as mortality from HIV/AIDS after achieving 
an undetectable VL. Bulage et al.[3] suggested that having active TB 
increases the odds of virological non-suppression.

The present study also revealed that patients who developed active 
TB while on cART experienced increased rates of transitions to 
death irrespective of their HIV/AIDS state. The highest rates were 
experienced when VL levels were between 50 and 10 000 copies/mL 
where patients who developed active TB on cART were 3.2 times 
more likely to experience death than patients who did not develop 
active TB. Our findings are in congruence with those of Bekker and 
Wood[23] and von Reyn et al.,[24] which show increased mortality 
rates in HIV patients with virological failure and co-infected with 
TB. Bekker and Wood[23] also observed that the onset of TB in HIV-
infected patients is associated with an increased risk of AIDS and 
death. We therefore propose regular monitoring of HIV patients 
coinfected with TB for virological failure. This should be done every 
2 months, and decisions should be made on alternative treatment 
approaches to prevent potential mortality.

Conclusions
Our findings reveal the importance of time in monitoring HIV/
AIDS progression for patients with virological failure as well as TB 
co-infection. The piecewise constant approach to non-homogeneous 
Markov modelling used shows two different trends in HIV/AIDS 
progression, i.e. a sharp increase in state 1 (undetectable VL level) 
prevalence in the first 0.5 years of treatment followed by a slowly 
decreasing prevalence trend thereafter. Not surprisingly, the model 
confirms that virological failure increases the risk of death. However, 
it suggests that while TB at the time of ART initiation does not 
increase the risk of viral rebound, the development of active TB after 
initiation of ART does increase this risk. This finding highlights the 
importance of improving VL monitoring, especially in people at risk 
of TB, and addressing unsuppressed VLs in this category of patients.
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